

Abstract—Android, Google open source operating system for

mobile devices, has been rapidly grown. Android applications

(apps) are uploaded to not only official market, play store, but

also other alternative markets. These markets have no

inspection system for detecting malicious apps. So, malicious

apps can be easily uploaded on the market. Many studies have

presented to detect malicious apps for the secure Android

mobile environment. But without user participation, it is

difficult to detect all of malicious apps.

We present a Warning System for detecting malicious

applications on Android system. The warning system monitors

API calls related suspicious behaviors running on the service

layer. After analysis malicious apps, we find that almost

malicious apps use similar API calls. We proposed modified

Android platform to warn suspicious API calls are running on

the service layer. The warning system lets user realize the

information of suspicious API calls and block the API calls.

Index Terms—Android security, malware detection,

intrusion detection, API monitoring.

I. INTRODUCTION

Since Apple’s iPhone and Google’s Android phone are

released in 2009, the smart phone has been rapidly grown.

Smart phones provide not only basic functionality such as

calling service and SMS, but also additional functionality

through different apps. Smart phone users download apps

from the app market and use them. Apple operates only one

app market which is App Store that includes an inspection

system to check if the apps have malicious code or not. In

contrast, Play Store, the official app market of Google, has no

inspection system for checking apps. iPhone users can

download apps from the only app store, but Android users

can download apps through many ways such as Google play

store, alternative markets, internet, Bluetooth, USB, and so

on. Because of this, malicious apps of android can be easily

distributed.

 Malicious apps cause financial threats by collecting user

information and sending premium-rate SMS messages. To

protect your phone from the threats, many anti-malware

companies have developed anti-malware apps. These

anti-malware apps are normally based on the signature. The

technic based on the signature is fast and simple to detect

known malware. But it is not able to detect new malware and

it takes 48days to receive a signature for a new malware [1].

Manuscript received November 10, 2012; revised January 24, 2013.

Sung-Hoon Lee is with the University of Science and Technology,

Daejeon, Korea (e-mail: sunghoon1130@etri.re.kr).

Seung-Hun Jin is with Electronics and Telecommunications Research

Institute, Daejeon, Korea (e-mail:jinsh@etri.re.kr).

In order to mitigate these threats from malware, many studies

have been presented to detect malware on android platform

[2]-[8]. But, it is still difficult to detect malware on android.

We present a warning system for detecting malware on

Android system. The warning system monitors API calls

related with suspicious activities and warns user with a

message. An API is related to an Android framework. The

Android framework is based on several libraries which are

listed on the android developer site [9]. The warning system

is able to detect for user suspicious activities running on the

service layer without the user’s consent and block the API

calls. We find that malwares call specific API calls through

analysis of android malware samples.

In summary, this paper makes the following contributions:

To understand how to run malicious code on Android and

find specific API calls using suspicious activities, we have

analyzed android malware samples and illustrated a structure

of malwares.

We have proposed our system, warning system for

detecting malicious applications, in android platform. In

order to illustrate our point, we have constructed the system

to monitor suspicious API calls running in the background of

the system and block the API calls.

The rest of this paper is organized as follows: Section II

introduces static analysis method for android malware

including the malware sample collection. In Section III we

analyze the malware we collected from the web. In Section

VI we explain the warning system framework. In Section V

we conclude and give possible future work.

II. MALWARE ANALYSIS

In order to detect malicious activities of malware, we need

to analyze malware. There are two methods which are static

analysis and dynamic analysis. In this paper, we use static

analysis.

A. Datasets

We collect Android malware from “Contagio mobile” [10]

site that has several popular malware samples. Malware can

be divided up into three types. (a). privilege escalation

exploit for additional threats. (b). leakage of the user’s

personal sensitive data. (c). premium rate SMS billing. We

focus on two types of malware samples, type (b) and type (c).

B. APK

Android application package file (APK) is the file format

used to distribute and install application. APK file consists of

AndroidManifest.xml, Classes.dex, res directory, lib

directory, META-INF directory, and resources. arsc as

shown Table I [11].

Warning System for Detecting Malicious Applications on

Android System

Sung-Hoon Lee and Seung-Hun Jin

International Journal of Computer and Communication Engineering, Vol. 2, No. 3, May 2013

324DOI: 10.7763/IJCCE.2013.V2.197

TABLE I: THE ARCHITECTURE OF APK

File Description

AndroidManifest.

xml

XML file including information such as permission

and description about application

Classes.dex
Binary execute file running on Dalvik Virtual

Machine

/res
The directory including resource files such as icon,

image, music and so on

/lib The directory including the compiled code

/META-INF
The certificate of the application and the list of

resources and SHA-1 digest and so on

resources.arsc Compiled resource file

C. Decompile

The goal of decompile is to get an original java source

codes. As said previous section, APK file is a compressed file.

It can be extracted dex file by unzip tool. After extracting an

apk file, it will be shown as Fig. 1.

Fig. 1. Results after extracting apk file.

Fig. 2. Static analysis method step.

In order to get an original java source codes, we decompile

classes.dex file through dex2jar [12]. A jar file aggregates

java class files of APK. With jd-gui tool that displays java

source codes of jar/class file [13], we can get original java

source codes. Fig. 2 shows the entire step to get java source

codes from apk file.

D. Result of Static Analysis

Fig. 3. Structure of premium rate SMS billing app.

We decompile several malwares and then analyze them.

The structure of premium rate SMS billing malicious app

such as Zsone [14] works as shown in Fig. 3. When malware

is installed, malicious Broadcast Receiver is registered to

broadcast messages from malicious server to only malware

so that user can not realize whether specific number

messages are delivered or not. Because the priority of

malicious broadcast receiver is higher than SMS broadcast

receiver as shown in Fig. 4. After malware is started, sending

Text Message () of SMS Manager API on the service layer

invoke to send a message with premium number which is

already defined in the source code as shown Fig. 5.

Fig. 4. Manifest.xml of malware.

Fig. 5. Premium number is already defined in the source code.

Fig. 6. Structure of malware related with leakage sensitive data.

Malicious Server receives a message from the user phone

and then the server sent a message to the user phone for that

SMS billing is charged. After the phone receives the message,

malicious Broadcast Receiver which is already registered

intercepts the message and the original SMS app does not

receive the message. Almost of malware related with

premium rate SMS billing use send Text Message ().

The structure of malware related with leakage user

sensitive data works as shown in Fig. 6.

Like premium rate SMS billing malware, this malware also

registers malicious broadcast receiver for broadcasting

incoming messages or calls. The difference between previous

malware and this malware is that benign app and malware

receive information from the broadcast receiver at the same

time. Malware creates a text file and logs incoming messages

and calls into the file. And then malware periodically send

the file with sensitive information such as IMEI, device ID,

company to remote server.

As a result, malwares register malicious broadcast receiver

and work on the service layer for hiding their malicious

activities.

III. PROPOSED TECHNIC

We found that malicious activities using API calls work in

International Journal of Computer and Communication Engineering, Vol. 2, No. 3, May 2013

325

the background of the system and the API calls are limited to

be used for malware.

Fig. 7. Structure of proposed android platform.

Therefore, we present a warning system to monitor API

calls related with malicious activities and to warn a user that

the API calls work without the user’s consent. For this system,

we need to modify android platform as shown Fig. 7.

When the app runs, many API calls are working. If specific

API calls such as send Text Message (), get Out put Stream (),

write bytes (), and so on are calling by the app, each API calls

compare with the dataset which stored phone number list

from the user phone and URLs that is already registered by

the benign app. If it exists on the dataset, the API calls run. If

not, API calls are sent to the warning system and then the

warning system pop-up a message with information related

with API.

The user may accept or deny about the API. If the API is

denied, the API is registered to Denied APIs file. Because

malicious code runs periodically, even the user deny API, we

need to create a file for denied API calls.

API calls is stored with PID. PID is a process ID and given

for each apps as shown Fig. 8 [15]. So the system can classify

whether this API is denied from the suspicious app.

The features of this system are as follows:

 It can monitor API calls running in the background of the

system. In current android system, there is no way for user

to realize which API calls are running in the background of

the system. With the proposed system, the system warns a

user that suspicious API calls are running in the

background without the user’s consent.

 It can block suspicious API calls if the user is not sure

about running API calls. Once API calls denied, there’s no

additional operations. If the user wants to back, API calls is

removed from the Denied API calls file.

Fig. 8. App structure.

IV. CONCLUSION AND FUTURE WORK

In this paper, we have analyzed two type malware which is

sending premium rate SMS and is leaking user sensitive data

to the remote server. The main reason to choose these

malware is causing most financial threats. We have seen that

android malware uses specific API calls for malicious

activities. The premium rate SMS billing app uses send Text

Message () of SMS Manager API with the target number

which is already defined by malicious developer. And the

leakage of user sensitive data app uses http communication

API such as Http URL Connection () and URL Connection ()

for sending user data to remote server.

The existing anti-malware apps are based on signature for

detecting malware. If malware is transformed to avoid

detecting based on signature, the signature of malware is

changed. Therefore the existing anti-malware apps do not

detect new and unknown malware because they have no

signature.

In order to address this problem, we have proposed a new

framework to monitor and to block API calls related to

suspicious app which is not scanned by the existing

anti-malware apps.

There’s a limitation that the user is familiar with android

applications and has the minimum knowledge of malware.

Because the user have a right to deny or accept warned API

calls.

This work is simply the first step in a longer journey

towards advanced detecting android malware. Next step is to

compare normal apps to malicious apps for developing

automatic algorithm system and to implement the warning

system. In order to keep the latest dataset, it needs to

periodically update normal API calls of benign apps. And the

warning system sends the Denied APIs file to remote server

for dynamic analysis.

REFERENCES

[1] J. Oberheide, E. Cooke, and F. Jahanian, “Cloudav: Nversion antivirus

in the network cloud,” in Proc. 17th USENIX Security Symposium, 2008,

pp. 2.2-1-2.2-6.

[2] W. Enck, M. Ongtang, and P. Mcdaniel, “On lightweight mobile phone

application certification,” in Proc. 16th ACM Conference on Computer

and Communications Security, 2009, pp. 235-245.

[3] I. Burguere, U. Zurutuza, and S. Nadim-Tehrani, “Crowdroid:

Behavior-Based malware detection system for Android,” in Proc. 1st

ACM Workshop on Security and Privacy in Smartphones and Mobile

Devices, 2011, pp. 15-26.

[4] W. Dong-Jie, M. Ching-Hao, W. Te-En, L. Hahn-Ming, and W.

Kuo-Ping, “DroidMat: Android malware detection through manifest

and API calls tracing,” in Proc. Seventh Asia Joint Conference on

Information Security(Asia JCIS), 2012, pp. 62-69.

[5] T. Isohara, K. Takemori, and A. Kubota, “Kernel-Based behavior

analysis for android malware detection,” in Proc. Seventh International

Conference on Computational Intelligence and Security, 2011, pp.

1011-1015.

[6] Y. Zhou and X. Jiang, “Dissecting android malware: Characterization

and evolution,” IEEE Symposium on Security and Privacy, pp. 95-109,

2012.

[7] Y. Zhou, Z. Wang, W. Zhou, and X. Jiang, “Hey, you, get off of my

market: Detecting malicious apps in official and alternative android

markets,” in Proc. 19th Network and Distributed System Security

Symposium, 2012.

[8] Y. Zhou, X. Zhang, X. Jiang, and P. Ning, “Droid MOSS: Detecting

repackaged smartphone applications in third-party android

marketplaces,” in Proc. 2nd ACM Conference on Data and Application

Security and Privacy, pp. 317-326, 2012.

[9] Google. Android API Reference. [Online]. Available:

http://www.developer.android.com/reference/packages.html

[10] Mila. (November, 2012). Android Malware samples. [Online].

Available: http://www.contagiominidump.blogspot.kr/

International Journal of Computer and Communication Engineering, Vol. 2, No. 3, May 2013

326

[11] M. Blazek. (August, 2011). APK file format description. [Online].

Available:

http://www.file-extensions.org/article/android-apk-file-format-descrip

tion

[12] Pxb1988. (November, 2012). Dex2jar. [Online]. Available:

http://www.code.google.com/p/dex2jar/

[13] E. Dupuy. (November, 2012). Jd-gui: Yet another fast java decompiler.

[Online]. Available: http://www.java.decompiler.free.fr/?q=jdgui

[14] T. Strazzere. (May, 2011). Zsone Trojan malware in Android. [Online].

Available:

https://www.blog.lookout.com/blog/2011/05/11/security-alert-zsone-t

rojan-found-in-android-market/

[15] A. Shabtai et al., “Google android: A comprehensive security

assessment,” IEEE Security & Privacy, vol. 8, no. 2, pp. 35-44, March

2010.

Sung-Hoon Lee received his B.S. Degree in

Department of Computer Engineering from Chungju

National University of Chungju, Korea in 2011. He is

now pursuing a M.S. degree in Information Security

engineering at University of Science and Technology,

Daejeon, Korea. His research interests are android

platform security and android malware detection

Seung-Hun Jin received his B.S. Degree in School of

Computer Science and Engineering from Soongsil

University, Seoul, Korea in 1993, the M.S. Degree in

School of Computer Science and Engineering from

Soongsil University, Seoul, Korea in 1995, and the Ph.D

Degrees in Department of Computer Science and

Engineering (Information Security) from Chungnam

National University, Daejeon, Korea in 2005. He is

currently a Team Leader/Principal Member of Engineering Staff of

Authentication Research Team in ETRI (Electronics and

Telecommunications Research Institute), Daejeon, Korea. His research

interests include information security (PKI, authentication/authorization

technique, privacy protection), mobile payment system, and

computer/network security.

International Journal of Computer and Communication Engineering, Vol. 2, No. 3, May 2013

327

